Zygosity Determination in Hairless Mice by PCR Based on Hrhr Gene Analysis

نویسندگان

  • Osamu Suzuki
  • Minako Koura
  • Yoko Noguchi
  • Kozue Uchio-Yamada
  • Junichiro Matsuda
چکیده

We analyzed the Hr gene of a hairless mouse strain of unknown origin (HR strain, http://animal.nibio.go.jp/e_hr.html) to determine whether the strain shares a mutation with other hairless strains, such as HRS/J and Skh:HR-1, both of which have an Hr(hr) allele. Using PCR with multiple pairs of primers designed to amplify multiple overlapping regions covering the entire Hr gene, we found an insertion mutation in intron 6 of mutant Hr genes in HR mice. The DNA sequence flanking the mutation indicated that the mutation in HR mice was the same as that of Hr(hr) in the HRS/J strain. Based on the sequence, we developed a genotyping method using PCR to determine zygosities. Three primers were designed: S776 (GGTCTCGCTGGTCCTTGA), S607 (TCTGGAACCAGAGTGACAGACAGCTA), and R850 (TGGGCCACCATGGCCAGATTTAACACA). The S776 and R850 primers detected the Hr(hr) allele (275-bp amplicon), and S607 and R850 identified the wild-type Hr allele (244-bp amplicon). Applying PCR using these three primers, we confirmed that it is possible to differentiate among homozygous Hr(hr) (longer amplicons only), homozygous wild-type Hr(shorter amplicons only), and heterozygous (both amplicons) in HR and Hos:HR-1 mice. Our genomic analysis indicated that the HR, HRS/J, and Hos:HR-1 strains, and possibly Skh:HR-1 (an ancestor of Hos:HR-1) strain share the same Hr(hr) gene mutation. Our genotyping method will facilitate further research using hairless mice, and especially immature mice, because pups can be genotyped before their phenotype (hair coat loss) appears at about 2 weeks of age.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple generation of hairless mice for in vivo imaging

The in vivo imaging of mice makes it possible to analyze disease progress non-invasively through reporter gene expression. As the removal of hair improves the accuracy of in vivo imaging, gene-modified mice with a reporter gene are often crossed with Hos:HR-1 mutant mice homozygous for the spontaneous Hrhr mutation that exhibit a hair loss phenotype. However, it is time consuming to produce mic...

متن کامل

Investigation of Paternal RhD Zygosity by Two Molecular Methods among Blood Donors in Kurdistan Province, Iran

Background: RhD antigen system is the leading cause of hemolytic disease of the fetus and newborn (HDFN). Paternal molecular RhD zygosity test is valuable to decide on the use of anti-D immunoglobulin prophylaxis in Rh D-negative pregnant women. We aimed to investigate the paternal RhD zygosity by two molecular methods among blood donors in Kurdistan province, the west of Iran. We also compared...

متن کامل

Determination of RhD zygosity: comparison of a double amplification refractory mutation system approach and a multiplex real-time quantitative PCR approach.

BACKGROUND Rh isoimmunization and hemolytic disease of the newborn still occur despite the availability of Rh immunoglobulin. For the prenatal investigation of sensitized RhD-negative pregnant women, determination of the zygosity of the RhD-positive father has important implications. The currently available molecular methods for RhD zygosity assessment, in general, are technically demanding and...

متن کامل

Cutaneous transcriptome analysis in NIH hairless mice

Mice with spontaneous coat mutations are ideal animal models for studying skin development and tumorigenesis. In this study, skin hair growth cycle abnormalities were examined in NIH hairless mice 42 days after birth (P42) by using hematoxylin-eosin (H&E) staining. To examine the gene expression patterns in the skin of mutant mice, the dorsal skin of P42 female NIH mice and NIH hairless mice wa...

متن کامل

PCR method for genotyping and zygosity-testing of RasH2 transgenic mice.

In short-term carcinogenicity testing using CB6F1-TgrasH2 mice, sibling nonTgrasH2 mice are used as a negative control. However, selection of TgrasH2 and nonTgrasH2 mice has been performed by PCR with only transgene specific primers by the conventional method. Therefore, the conventional method involves the risk of false negative results due to reaction failure, and contamination with TgrasH2 m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2013